Axial Symmetric Granular Flow Due to Gravity in a Circular Pipe

Author:

Naeem NumanORCID,Vieru DumitruORCID,Muhammad NoorORCID,Ahmed NajmaORCID

Abstract

Axisymmetric granular flows in vertical cylindrical pipes under action of gravity are studied using mathematical particle–particle models based on the Hertz–Mindlin theory. By and large, in granular flows, the density field and the pressure are unknown scalar functions. A well-known relationship between these fields gives the pressure field a power law of the density. The aim of this paper was to study unsteady, axisymmetric, fully developed granular flow under gravity action in a vertical cylindrical pipe, under the assumptions that the density field is constant and the velocity on the pipe’s wall is time-dependent. Using integral transforms method and appropriate initial-boundary conditions, the analytical solution for axial velocity is determined. The obtained analytical solution is used to determine the steady-state solution (the solution for large values of the time). The properties of the flow in some particular cases of the velocity on the pipe’s surface are analyzed and the transient flow is compared with the stationary one.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3