A Continuous Region-Based Skyline Computation for a Group of Mobile Users

Author:

Dehaki Ghoncheh Babanejad,Ibrahim HamidahORCID,Alwan Ali A.ORCID,Sidi FatimahORCID,Udzir Nur IzuraORCID,Lawal Ma′aruf Mohammed

Abstract

Skyline queries, which are based on the concept of Pareto dominance, filter the objects from a potentially large multi-dimensional collection of objects by keeping the best, most favoured objects in satisfying the user′s preferences. With today′s advancement of technology, ad hoc meetings or impromptu gatherings involving a group of people are becoming more and more common. Intuitively, deciding on an optimal meeting point is not a straightforward task especially when conflicting criteria are involved and the number of criteria to be considered is vast. Moreover, a point that is near to a user might not meet all the various users′ preferences, while a point that meets most of the users′ preferences might be located far away from these users. The task becomes more complicated when these users are on the move. In this paper, we present the Region-based Skyline for a Group of Mobile Users (RSGMU) method, which aims to resolve the problem of continuously finding the optimal meeting points, herein called skyline objects, for a group of users while they are on the move. RSGMU assumes a centroid-based movement where users are assumed to be moving towards a centroid that is identified based on the current locations of each user in the group. Meanwhile, to limit the searching space in identifying the objects of interest, a search region is constructed. However, the changes in the users′ locations caused the search region of the group to be reconstructed. Unlike the existing methods that require users to frequently report their latest locations, RSGMU utilises a dynamic motion formula, which abides to the laws of classical physics that are fundamentally symmetrical with respect to time, in order to predict the locations of the users at a specified time interval. As a result, the skyline objects are continuously updated, and the ideal meeting points can be decided upon ahead of time. Hence, the users′ locations as well as the spatial and non-spatial attributes of the objects are used as the skyline evaluation criteria. Meanwhile, to avoid re-computation of skylines at each time interval, the objects of interest within a Single Minimum Bounding Rectangle that is formed based on the current search region are organized in a Kd-tree data structure. Several experiments have been conducted and the results show that our proposed method outperforms the previous work with respect to CPU time.

Funder

Ministry of Higher Education

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference32 articles.

1. The Skyline Operator;Börzsönyi;Proceedings of the 17th International Conference on Data Engineering,2001

2. A Framework for Processing Skyline Queries for a Group of Mobile Users;Dehaki;Proceedings of the 20th International Conference on Information Integration and Web–based Applications & Services,2018

3. Continuous range-based skyline queries in road networks

4. The Spatial Skyline Queries;Sharifzadeh;Proceedings of the 32nd International Conference on Very Large Data Bases,2006

5. Processing spatial skyline queries in both vector spaces and spatial network databases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3