Solving the Adaptive Cubic Regularization Sub-Problem Using the Lanczos Method

Author:

Zhu Zhi,Chang JingyaORCID

Abstract

The adaptive cubic regularization method solves an unconstrained optimization model by using a three-order regularization term to approximate the objective function at each iteration. Similar to the trust-region method, the calculation of the sub-problem highly affects the computing efficiency. The Lanczos method is an useful tool for simplifying the objective function in the sub-problem. In this paper, we implement the adaptive cubic regularization method with the aid of the Lanczos method, and analyze the error of Lanczos approximation. We show that both the error between the Lanczos objective function and the original cubic term, and the error between the solution of the Lanczos approximation and the solution of the original cubic sub-problem are bounded up by the condition number of the optimal Hessian matrix. Furthermore, we compare the numerical performances of the adaptive cubic regularization algorithm when using the Lanczos approximation method and the adaptive cubic regularization algorithm without using the Lanczos approximation for unconstrained optimization problems. Numerical experiments show that the Lanczos method improves the computation efficiency of the adaptive cubic method remarkably.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3