A DRL-Driven Intelligent Optimization Strategy for Resource Allocation in Cloud-Edge-End Cooperation Environments

Author:

Fang ChaoORCID,Zhang Tianyi,Huang Jingjing,Xu Hang,Hu Zhaoming,Yang Yihui,Wang ZhuweiORCID,Zhou Zequan,Luo Xiling

Abstract

Complex dynamic services and heterogeneous network environments make the asymmetrical control a curial issue to handle on the Internet. With the advent of the Internet of Things (IoT) and the fifth generation (5G), the emerging network applications lead to the explosive growth of mobile traffic while bringing forward more challenging service requirements to future radio access networks. Therefore, how to effectively allocate limited heterogeneous network resources to improve content delivery for massive application services to ensure network quality of service (QoS) becomes particularly urgent in heterogeneous network environments. To cope with the explosive mobile traffic caused by emerging Internet services, this paper designs an intelligent optimization strategy based on deep reinforcement learning (DRL) for resource allocation in heterogeneous cloud-edge-end collaboration environments. Meanwhile, the asymmetrical control problem caused by complex dynamic services and heterogeneous network environments is discussed and overcome by distributed cooperation among cloud-edge-end nodes in the system. Specifically, the multi-layer heterogeneous resource allocation problem is formulated as a maximal traffic offloading model, where content caching and request aggregation mechanisms are utilized. A novel DRL policy is proposed to improve content distribution by making cache replacement and task scheduling for arriving content requests in accordance with the information about users’ history requests, in-network cache capacity, available link bandwidth and topology structure. The performance of our proposed solution and its similar counterparts are analyzed in different network conditions.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3