OpenFOAMTM Simulation of the Shock Wave Reflection in Unsteady Flow

Author:

Monaldi LucasORCID,Marcantoni Luis Gutiérrez,Elaskar SergioORCID

Abstract

This work studies the impact of a shock wave traveling with non-constant velocity over straight surfaces, generating an unsteady and complex reflection process. Two types of shock waves generated by sudden energy released are studied: cylindrical and spherical. Several numerical tests were developed considering different distances between the shock wave origin and the reflecting surface. The Kurganov, Noelle, and Petrova (KNP) scheme implemented in the rhoCentralFoam solver of the OpenFOAMTM software is used to reproduce the different shock wave reflections and their transitions. The numerical simulations of the reflected angle, Mach number of the shock wave, and position of the triple point are compared with pseudo-steady theory numerical and experimental studies. The numerical results show good accuracy for the reflected angle and minor differences for the Mach number. However, the triple point position is more difficult to predict. The KNP scheme in the form used in this work demonstrates the ability to capture the phenomena involved in the unsteady reflections.

Funder

National Scientific and Technical Research Council

FONCyT-PICT-2017

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3