Using Software-Defined Networking for Data Traffic Control in Smart Cities with WiFi Coverage

Author:

Kurungadan Basima,Abdrabou AtefORCID

Abstract

The growth of smart cities is fueled by the vast rise in wireless smart gadgets and uninterrupted connectivity. WiFi is the dominant wireless technology, enabling Internet-of-Things (IoT) connectivity in smart cities due to its ubiquitous access points and low deployment cost. However, smart city applications offer a wide range of services with different quality-of-service (QoS) demands. This paper addresses packet delivery latency as one of the QoS metrics affecting many time-sensitive smart city services. Thus, the paper proposes employing software-defined networking (SDN) to control the traffic load of WiFi access points (APs), preserving its symmetry in a city-wide coverage of WiFi-connected IoT gateways or fog nodes. These gateways receive data packets from smart city/IoT devices via wireless links and forward them over a city-deployed WiFi network to their management entities or servers. Three SDN-based algorithms are devised to reduce the gateways’ packet-forwarding delay and keep a symmetric traffic load at the WiFi network APs. The algorithms are developed and tested using a real hardware setup constituting WiFi devices without additional requirements on the IoT gateways (WiFi clients) or the APs, such as support for a specific roaming protocol or bandwidth-consuming signaling such as sending probe packets. Extensive hardware experimentation shows that the SDN controller, via the proposed algorithms, can effectively reduce the packet forwarding latency of IoT gateways by carefully selecting the IoT gateway with the highest packet latency and seamlessly handing it over to the least-loaded covering AP.

Funder

United Arab Emirates University

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference41 articles.

1. Is Fast WIFI the Most Basic of Human Needs?—Pace Technical. Report. 2022.

2. Maslow, A.H. A dynamic theory of human motivation. Understanding Human Motivation, 1958.

3. Index, C.V.N. Forecast and Trends, 2017–2022 White Paper, 2019.

4. A survey of wearable devices and challenges;Seneviratne;IEEE Commun. Surv. Tutor.,2017

5. Burger, V., Seufert, M., Kaup, F., Wichtlhuber, M., Hausheer, D., and Tran-Gia, P. Impact of WiFi offloading on video streaming QoE in urban environments. Proceedings of the 2015 IEEE International Conference on Communication Workshop (ICCW).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3