FPGA Hardware Realization of Membrane Calculation Optimization Algorithm with Great Parallelism

Author:

Song QiORCID,Huang Yourui,Lai WenhaoORCID,Xu JiachangORCID,Xu Shanyong,Han Tao,Rong Xue

Abstract

Aiming to investigate the disadvantage of the optimization algorithm of membrane computing (a P system) in which it is difficult to take advantage of parallelism in MATLAB, leading to a slow optimization speed, a digital-specific hardware solution (field-programmable gate array, FPGA) is proposed to design and implement the single-cell-membrane algorithm (SCA). Because the SCA achieves extensive global searches by the symmetric processing of the solution set, with independent and symmetrically distributed submembrane structures, the FPGA-hardware-based design of the SCA system includes a control module, an HSP module, an initial value module, a fitness module, a random number module, and multiple submembrane modules with symmetrical structures. This research utilizes the inherent parallel characteristics of the FPGA to achieve parallel computations of multiple submembrane modules with a symmetric structure inside the SCA, and it achieves a high degree of parallelism of rules inside the modules by using a non-blocking allocation. This study uses the benchmark Sphere function to verify the performance of the FPGA-designed SCA system. The experimental results show that, when the FPGA platform and the MATLAB platform obtain a similar calculation accuracy, the average time-consuming of the FPGA is 0.00041 s, and the average time-consuming of MATLAB is 0.0122 s, and the calculation speed is improved by nearly 40 times. This study uses the FPGA design to implement the SCA, and it verifies the advantages of the membrane-computing maximum-parallelism theory and distributed structures in computing speed. The realization platform of membrane computing is expanded, which provides a theoretical basis for further development of the distributed computing model of population cells.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference34 articles.

1. Computing with Membranes;Păun;J. Comput. Syst. Sci.,2000

2. Păun, G. Membrane Computing: An Introduction, 2002.

3. A Survey of Nature-Inspired Computing;Song;ACM Comput. Surv.,2021

4. Spiking neural P systems;Ionescu;Fundam. Inform.,2006

5. Tissue P systems;Martín-Vide;Theor. Comput. Sci.,2003

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FPGA-Based Convolutional Neural Network for Classifying Image Blocks;2023 International Russian Automation Conference (RusAutoCon);2023-09-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3