Recent Developments in Heterogeneous Photocatalysts with Near-Infrared Response

Author:

Cao Nan,Xi Meilan,Li Xiaoli,Zheng Jinfang,Qian Limei,Dai YitaoORCID,Song Xizhong,Hu Shengliang

Abstract

Photocatalytic technology has been considered as an efficient protocol to drive chemical reactions in a sustainable and green way. With the assistance of semiconductor-based materials, heterogeneous photocatalysis converts solar energy directly into chemical energy that can be readily stored. It has been employed in several fields including CO2 reduction, H2O splitting, and organic synthesis. Given that near-infrared (NIR) light occupies 47% of sunlight, photocatalytic systems with a NIR response are gaining more and more attention. To enhance the solar-to-chemical conversion efficiency, precise regulation of the symmetric/asymmetric nanostructures and band structures of NIR-response photocatalysts is indispensable. Under the irradiation of NIR light, the symmetric nano-morphologies (e.g., rod-like core-shell shape), asymmetric electronic structures (e.g., defect levels in band gap) and asymmetric heterojunctions (e.g., PN junctions, semiconductor-metal or semiconductor-dye composites) of designed photocatalytic systems play key roles in promoting the light absorption, the separation of electron/hole pairs, the transport of charge carriers to the surface, or the rate of surface photocatalytic reactions. This review will comprehensively analyze the four main synthesis protocols for the fabrication of NIR-response photocatalysts with improved reaction performance. The design methods involve bandgap engineering for the direct utilization of NIR photoenergy, the up-conversion of NIR light into ultraviolet/visible light, and the photothermal effect by converting NIR photons into local heat. Additionally, challenges and perspectives for the further development of heterogeneous photocatalysts with NIR response are also discussed based on their potential applications.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3