Deflection Angle and Shadow of the Reissner–Nordström Black Hole with Higher-Order Magnetic Correction in Einstein-Nonlinear-Maxwell Fields

Author:

Kumaran Yashmitha,Övgün AliORCID

Abstract

Nonlinear electrodynamics is known as the generalizations of Maxwell electrodynamics at strong fields and presents interesting features such as curing the classical divergences present in the linear theory when coupled to general relativity. In this paper, we consider the asymptotically flat Reissner–Nordström black hole solution with higher-order magnetic correction in Einstein-nonlinear-Maxwell fields. We study the effect of the magnetic charge parameters on the black hole, viz., weak deflection angle of photons and massive particles using the Gauss–Bonnet theorem. Moreover, we apply Keeton–Petters formalism to confirm our results concerning the weak deflection angle. Apart from a vacuum, their influence in the presence of different media such as plasma and dark matter are probed as well. Finally, we examine the black hole shadow cast using the null-geodesics method and investigate its spherically in-falling thin accretion disk. Our inferences show how the magnetic charge parameter p affects the other physical quantities; so, we impose some constraints on this parameter using observations from the Event Horizon Telescope.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference131 articles.

1. The Foundation of the General Theory of Relativity;Einstein;Ann. Phys.,1916

2. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole;Akiyama;Astrophys. J. Lett.,2019

3. First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way;Akiyama;Astrophys. J. Lett.,2022

4. The Escape of Photons from Gravitationally Intense Stars;Synge;Mon. Not. R. Astron. Soc.,1966

5. Image of a spherical black hole with thin accretion disk;Luminet;Astron. Astrophys.,1979

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3