Analysis and Design of Enhanced Distributed Fountain Codes in Multiple Access Networks with Cooperative Relay

Author:

Shao HanqinORCID,Zhu Hongbo,Bao Junwei

Abstract

Distributed fountain coding plays an important role in rateless code research. The reliability and effectiveness of these coding schemes are increasingly challenged with the growing applications. In this paper, a novel multiple-access network with cooperative relay is presented, and a novel enhanced distributed fountain coding scheme for this network is proposed. The overall degree distributions are derived, and the asymptotic decoding performance is analyzed theoretically by employing the And-Or tree method. On this basis, a design method using joint iterative optimization algorithms is proposed to optimize the degree distributions of the sources and relays. Simulation results show that the proposed enhanced distributed fountain codes outperform the existing generalized distributed fountain codes (GDFC) and have a good performance on both lossless and lossy channels. It reveals that the proposed codes can provide unequal error protection (UEP) property for different sources by introducing the extra cooperative relay. The performance improvement is not restricted to the sources connected to the cooperative relay but applies to all sources. With the additional relay, the proposed codes are able to overcome the effects of bad channel conditions caused by terrain, obstacles, and so on, to avoid communication interruptions and improve the reliability of the network.

Funder

National Natural Science Foundation of China

Jiangsu Provincial Key Research and Development Program

NUPTSF

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3