Assessment of Regression Models for Surface Water Quality Modeling via Remote Sensing of a Water Body in the Mexican Highlands

Author:

Cruz-Retana Alejandro12ORCID,Becerril-Piña Rocio3ORCID,Fonseca Carlos Roberto2ORCID,Gómez-Albores Miguel A.2ORCID,Gaytán-Aguilar Sandra4,Hernández-Téllez Marivel2,Mastachi-Loza Carlos Alberto2ORCID

Affiliation:

1. Tecnológico de Estudios Superiores de Jocotitlán (TESJo), Jocotitlan 50700, Mexico

2. Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Toluca 50295, Mexico

3. Red Lerma- IITCA, Toluca 50295, Mexico

4. Deltares, 5058 Delft, The Netherlands

Abstract

Remote sensing plays a crucial role in modeling surface water quality parameters (WQPs), which aids spatial and temporal variation assessment. However, existing models are often developed independently, leading to uncertainty regarding their applicability. This study focused on two primary objectives. First, it aimed to evaluate different models for chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN), and total suspended solids (TSS) in a surface water body, the J. A. Alzate dam, in the Mexican highland region (R2 ≥ 0.78 and RMSE ≤ 16.1 mg/L). The models were estimated using multivariate regressions, with a focus on identifying dilution and dragging effects in inter-annual flow rate estimations, including runoff from precipitation and municipal discharges. Second, the study sought to analyze the potential scope of application for these models in other water bodies by comparing mean WQP values. Several models exhibited similarities, with minimal differences in mean values (ranging from −9.5 to 0.57 mg/L) for TSS, TN, and TP. These findings suggest that certain water bodies may be compatible enough to warrant the exploration of joint modeling in future research endeavors. By addressing these objectives, this research contributes to a better understanding of the suitability of remote sensing-based models for characterizing surface water quality, both within specific locations and across different water bodies.

Funder

CONACYT

UAEMex through the project “Decision-making models for the water resources recovery

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3