Experimental Analysis of the Function of a Window with a Phase Change Heat Accumulator

Author:

Lichołai LechORCID,Musiał MichałORCID

Abstract

The article presents the results of long-term field tests and their mathematical analysis regarding the impacts of innovative phase change materials on the energy efficiency of composite windows with various glazing parameters. Research was conducted on six glazing combinations throughout the heating season in a temperate climate in Rzeszów (Poland). The empirical results obtained during the spring months showed an improvement in the monthly heat balance for windows with phase change materials compared to the reference window by as much as 34.09%. In addition, the empirical results allowed the development and verification of a mathematical model describing the transport and distribution of heat within a window with a phase change heat accumulator. The model was made using equations of non-stationary heat flow and an explicit finite difference method using calorimetric thermograms describing the phase change eutectic mixture used in the research. Carrying out the Snedecor–Fischer test proved the statistical adequacy of the developed model in 4 out of 6 tested combinations of glazing units. Good matching of the empirical and theoretical quantities was also confirmed using the quasi-Newton method. The article is a solution to the problem of the effective use of solar energy within transparent building partitions, while presenting a useful mathematical tool that determines potential thermal gains in various climatic conditions.

Publisher

MDPI AG

Subject

General Materials Science

Reference61 articles.

1. Xenophon Socratic Letters. Memories of Socrates;Jachimowicz,1967

2. Development of solar energy gaining concept in architectural and urban solutions: First generation of solar architecture;Wehle-Strzelecka;Tech. Transac. Arch.,2008

3. Sustainable construction means construction of future;Czarnecki;Eng. Const.,2012

4. Sustainable Development in Contemporary Civilisation. Part 1: The Environment and Sustainable Development;Pawłowski;Prob. Sustainab. Develop.,2008

5. Pos. 926 Amending the Regulation on the Technical Conditions to be Met by Buildings and Their Location,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3