Author:
Kang Kexin,Liu Yibo,Li Junzhao,Liu Chao,Zhen Zuyang,Wang Yaxin,Sun Qingjie
Abstract
The 6061 aluminum alloy and 304 stainless steel were welded by hybrid cold metal transfer (CMT) welding with external axial magnetic field. The effects of magnetic intensity and frequency on joint microstructure and mechanical properties were studied. It was found that the magnetic field can promote the spreading of aluminum weld metal on the steel surface and thus increase the bonding area of Al/steel butt joint. The welding process stability improved, while the wetting behavior worsened with the introduction of alternating frequencies. The thickness of the intermetallic compound (IMC) layer at Al/steel interface was reduced to 3 μm with the coil current of 2 A. The application of the magnetic field promoted the aggregation of Si atoms at the interface and inhibited the formation of brittle (Al, Si)13Fe4 phase. The fracture paths were transformed from (Al, Si)13Fe4 layer to Al8Fe2Si layer with the application of the magnetic field. The maximum tensile strength reached 130.2 MPa, an increase of 61.6% in comparison to the normal CMT process.
Funder
National Natural Science Foundation of China
Subject
General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献