Dynamics Studies of Nitrogen Interstitial in GaN from Ab Initio Calculations

Author:

He HuanORCID,Liu WenboORCID,Zhang Pengbo,Liao Wenlong,Tong Dayin,Yang Lin,He Chaohui,Zang Hang,Zong Hongxiang

Abstract

Understanding the properties of defects is crucial to design higher performance semiconductor materials because they influence the electronic and optical properties significantly. Using ab initio calculations, the dynamics properties of nitrogen interstitial in GaN material, including the configuration, migration, and interaction with vacancy were systematically investigated in the present work. By introducing different sites of foreign nitrogen atom, the most stable configuration of nitrogen interstitial was calculated to show a threefold symmetry in each layer and different charge states were characterized, respectively. In the researches of migration, two migration paths, in-plane and out-of-plane, were considered. With regards to the in-plane migration, an intermediated rotation process was observed first time. Due to this rotation behavior, two different barriers were demonstrated to reveal that the migration is an anisotropic behavior. Additionally, charged nitrogen Frenkel pair was found to be a relatively stable defect complex and its well separation distance was about 3.9 Å. Part of our results are in good agreement with the experimental results, and our work provides underlying insights of the identification and dynamics of nitrogen interstitial in GaN material. This study of defects in GaN material is useful to establish a more complete theory and improve the performance of GaN-based devices.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3