Construction Disputes and Associated Contractual Knowledge Discovery Using Unstructured Text-Heavy Data: Legal Cases in the United Kingdom

Author:

Lee JeeHeeORCID,Ham YoungjibORCID,Yi June-Seong

Abstract

Construction disputes are one of the main challenges to successful construction projects. Most construction parties experience claims—and even worse, disputes—which are costly and time-consuming to resolve. Lessons learned from past failure cases can help reduce potential future risk factors that likely lead to disputes. In particular, case law, which has been accumulated from the past, is valuable information, providing useful insights to prepare for future disputes. However, few efforts have been made to discover legal knowledge using a large scale of case laws in the construction field. The aim of this paper is to enhance understanding of the multifaceted legal issues surrounding construction adjudication using large amounts of accumulated construction legal cases. This goal is achieved by exploring dispute-related contract terms and conditions that affect judicial decisions based on their verdicts. This study builds on text mining methods to examine what type of contract conditions are frequently referenced in the final decision of each dispute. Various text mining techniques are leveraged for knowledge discovery (i.e., analyzing frequent terms, discovering pairwise correlations, and identifying potential topics) in text-heavy data. The findings show that (1) similar patterns of disputes have occurred repeatedly in construction-related legal cases and (2) the discovered dispute topics indicate that mutually agreed upon contract terms and conditions are import in dispute resolution.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3