Implicit Definition of Flow Patterns in Street Canyons—Recirculation Zone—Using Exploratory Quantitative and Qualitative Methods

Author:

Chatzimichailidis Arsenios E.,Argyropoulos Christos D.ORCID,Assael Marc J.ORCID,Kakosimos Konstantinos E.ORCID

Abstract

Air pollution is a major health hazard for the population that increasingly lives in cities. Street-scale Air Quality Models (AQMs) are a cheap and efficient way to study air pollution and possibly provide solutions. Having to include all the complex phenomena of wind flow between buildings, AQMs employ several parameterisations, one of which is the recirculation zone. Goal of this study is to derive an implicit or explicit definition for the recirculation zone from the flow in street canyons using computational fluid dynamics (CFD). Therefore, a CFD-Large Eddy Simulation model was employed to investigate street canyons with height to width ratio from 1 to 0.20 under perpendicular wind direction. The developed dataset was analyzed with traditional methods (vortex visualization criteria and pollutant dispersion fields), as well as clustering methods (machine learning). Combining the above analyses, it was possible to extract qualitative features that agree well with literature but most importantly to develop quantitative expressions that describe their topology. The extracted features’ topology depends strongly on the street canyon dimensions and not surprisingly is independent of the wind velocity. The developed expressions describe areas with common flow characteristics inside the canyon and thus they can be characterised as an implicit definition for the recirculation zone. Furthermore, the presented methodology can be further applied to cover more parameters such us oblique wind direction and heated-facades and more methods for data analysis.

Funder

Qatar National Research Fund

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3