Use of Dithiothreitol Assay to Evaluate the Oxidative Potential of Atmospheric Aerosols

Author:

Jiang ,Ahmed ,Canchola ,Chen ,Lin

Abstract

Oxidative potential (OP) has been proposed as a useful descriptor for the ability of particulate matter (PM) to generate reactive oxygen species (ROS) and consequently induce oxidative stress in biological systems, which has been recognized as one of the most important mechanisms responsible for PM toxicity. The dithiothreitol (DTT) assay is one of the most frequently used techniques to quantify OP because it is low-cost, easy-to-operate, and has high repeatability. With two thiol groups, DTT has been used as a surrogate of biological sulfurs that can be oxidized when exposed to ROS. Within the DTT measurement matrix, OP is defined as the DTT consumption rate. Often, the DTT consumption can be attributed to the presence of transition metals and quinones in PM as they can catalyze the oxidation of DTT through catalytic redox reactions. However, the DTT consumption by non-catalytic PM components has not been fully investigated. In addition, weak correlations between DTT consumption, ROS generation, and cellular responses have been observed in several studies, which also reveal the knowledge gaps between DTT-based OP measurements and their implication on health effects. In this review, we critically assessed the current challenges and limitations of DTT measurement, highlighted the understudied DTT consumption mechanisms, elaborated the necessity to understand both PM-bound and PM-induced ROS, and concluded with research needs to bridge the existing knowledge gaps.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3