Variations in Greenhouse Gas Fluxes in Response to Short-Term Changes in Weather Variables at Three Elevation Ranges, Wakiso District, Uganda

Author:

Fatumah NakiguliORCID,Munishi Linus K.,Ndakidemi Patrick A.

Abstract

Weather conditions are among the major factors leading to the increasing greenhouse gas (GHG) fluxes from the agricultural soils. In this study, variations in the soil GHG fluxes with precipitation and soil temperatures at different elevation ranges in banana–coffee farms, in the Wakiso District, Uganda, were evaluated. The soil GHG fluxes were collected weekly, using the chamber method, and analyzed by using gas chromatography. Parallel soil temperature samples were collected by using a REOTEMP soil thermometer. Daily precipitation was measured with an automated weather station instrument installed on-site. The results showed that CO2, N2O, and CH4 fluxes were significantly different between the sites at different elevation ranges. Daily precipitation and soil temperatures significantly (p < 0.05) affected the soil GHG fluxes. Along an elevation gradient, daily precipitation and soil temperatures positively associated with the soil GHG fluxes. The combined factors of daily precipitation and soil temperatures also influence the soil GHG fluxes, but their effect was less than that of the single effects. Overall, daily precipitation and soil temperatures are key weather factors driving the soil GHG fluxes in time and space. This particular study suggests that agriculture at lower elevation levels would help reduce the magnitudes of the soil GHG fluxes. However, this study did not measure the soil GHG fluxes from the non-cultivated ecosystems. Therefore, future studies should focus on assessing the variations in the soil GHG fluxes from non-cultivated ecosystems relative to agriculture systems, at varying elevation ranges.

Funder

German Academic Exchange Service New Delhi

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference91 articles.

1. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2013

2. Climate change and trace gases

3. Soil carbon debt of 12,000 years of human land use

4. Chapter 11—Agriculture, forestry and other land use (AFOLU);Smith,2014

5. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3