Evaluation of Near-Surface Wind Speed Changes during 1979 to 2011 over China Based on Five Reanalysis Datasets

Author:

Yu Jiang,Zhou TianjunORCID,Jiang Zhihong,Zou LiweiORCID

Abstract

Wind speed data derived from reanalysis datasets has been used in the plan and design of wind farms in China, but the quality of these kinds of data over China remains unknown. In this study, the performances of five sets of reanalysis data, including National Centers for Environmental Predictions (NCEP)-U.S. Department of Energy (DOE) Reanalysis 2 (NCEP-2), Modern-ERA Retrospective Analysis for Research and Applications (MERRA), Japanese 55-year Reanalysis Project (JRA-55), Interim ECMWF Re-Analysis product (ERA-Interim), and 20th Century Reanalysis (20CR) in reproducing the climatology, interannual variation, and long-term trend of near-surface (10 m above ground) wind speed, for the period of 1979–2011 over continental China are comprehensively evaluated. Compared to the gridded data compiled from meteorological stations, all five reanalysis datasets reasonably reproduce the spatial distribution of the climatology of near-surface wind speed, but underestimate the intensity of the near-surface wind speed in most regions except for Tibetan Plateau where the wind speed is overestimated. All five reanalysis datasets show large weaknesses in reproducing the annual cycle of near-surface wind speed averaged over the continental China. The near-surface wind speed derived from the observations exhibit significant decreasing trends over most parts of continental China during 1979 to 2011. Although the spatial patterns of the linear trends reproduced by reanalysis datasets are close to the observation, the magnitudes are weaker in annual, spring, summer and autumn season. The qualities of all reanalysis datasets are limited in winter. For the interannual variability, except for winter, all five reanalysis datasets reasonably reproduce the interannual standard deviation but with larger amplitude. Quantitative comparison indicates that among the five reanalysis datasets, the MERRA (JRA-55) shows the relatively highest (lowest) skill in terms of the climatology and linear trend. These results call for emergent needs for developing high quality reanalysis data that can be used in wind resource assessment and planning.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3