Application of DPPH Assay for Assessment of Particulate Matter Reducing Properties

Author:

Frezzini Maria AgostinaORCID,Castellani Federica,De Francesco Nayma,Ristorini Martina,Canepari Silvia

Abstract

Different acellular assays were developed to measure particulate matter’s (PM) oxidative potential (OP), a metric used to predict the ability of PM in generating oxidative stress in living organisms. However, there are still fundamental open issues regarding the complex redox equilibria among the involved species which could include reducing compounds. The aim of this study was the pilot application of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay to PM in order to evaluate the presence of reducing species. The assay, commonly applied to biological matrices, was adapted to PM and showed good analytical performances. It allowed the analysis of conventional 24 h airborne PM samples with suitable sensitivity and good repeatability of the measurements. The assay was applied to seven samples representing possible PM contributes (certified urban dust NIST1648a; brake dust; Saharan dust; coke dust; calcitic soil dust; incinerator dust; and diesel particulate matter certified material NIST1650b) and to PM2.5 field filters. The same samples were also analyzed for elements. Preliminary results indicated that the assay gave a linear response and that detectable amounts of reducing species were present in PM samples. The combined application of DPPH and conventional OP assays could then permit, in the future, to gain more knowledge about the reaction and/or competition between oxidative and reducing processes.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3