Parameterization of The Single-Scattering Properties of Dust Aerosols in Radiative Flux Calculations

Author:

Wang Meihua,Su Jing,Li Xugang,Wang Chen,Ge Jinming

Abstract

In this study, we present parameterization schemes of dust single-scattering properties (SSPs) in order to establish a fast and accurate way to obtain the SSPs for dust shortwave radiative flux calculation. Based on the assumption that dust particles are spheroids, we represent a single nonspherical particle with a collection of monodisperse spheres that contain the same total surface area and volume as the original particle to convert the spheroid to a sphere. The SSPs of dust particles were parameterized in terms of the effective radius ( R e ) and imaginary part of the refractive index ( M i ). The averaged relative errors of the parameterized to the “exact” single-scattering properties, which refer to the results from the Mie theory program, are below 1.5%. To further quantify the impact of parametrization on the radiative flux simulation, we computed the radiative fluxes at both the top of the atmosphere (TOA) and the surface by using SSPs from the parameterization and the “exact”, respectively. The maximum relative errors were below 1% at both the TOA and the surface, proving that the SSPs of dust calculated by our parameterization schemes are well suited for radiative flux calculations. This parameterization differs from previous works by being formulated not only with R e but also with M i . We also investigated the sensitivity of dust-aerosol forcing to R e , M i , optical depth (τ), and solar zenith angle (SZA). The results show that the value of shortwave (SW) radiative forcing (RF) at the TOA changes from negative to positive as the M i is increasing, which means that, as the absorption of dust particles becomes stronger, more energy is kept in the atmosphere to heat the earth–atmosphere system. The SW RF gradually becomes less negative at the TOA and more negative at the surface with increasing R e , due to the decreases of reflection and transmission along with the single-scattering albedo decreasing. As the optical depth increases, the values of the SW RF decrease because of the strong attenuation for heavy loading. When SZA increases, the SW RF becomes more negative at both the TOA and the surface due to the long optical path at a large SZA. The errors induced from the parameterized SSPs of dust in the SW RF calculation are very small, which are less than 2.1%, demonstrating the accuracy of the parameterization and its reliability for climate model applications.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central University

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3