Assessing the Impact of Ozone and Particulate Matter on Mortality Rate from Respiratory Disease in Seoul, Korea

Author:

Park

Abstract

The evidence linking ozone and particulate matter with adverse health impacts is increasing. The goal of this study was to assess the impact of air pollution on the mortality rate from respiratory disease in Seoul, Korea, between 2008 and 2017. The analysis was conducted using a decision tree model in two ways: using 24-hour average concentrations and using 1-hour maximum values to compare any health impacts from the different times of exposure to pollution. Results show that in spring an elevated level of ozone is one of the most important factors, but in summer temperature has a greater impact than air pollution. Nitrogen dioxide is one of the most important factors in fall, while high levels of particles less than 2.5 μm (PM2.5) and 10 μm in size (PM10) and cooler temperatures are key factors in winter. We checked the accuracy of our results through a 10-fold cross validation method. Error rates using 24-hour average and 1-hour maximum concentrations were in the ranges of 24.9%–42% and 27.6%–42%, respectively, indicating that 24-hour average concentrations are slightly more directly related with mortality rate. These results could be useful for policy makers in determining the temporal scale of predicted pollutant concentrations for an air quality warning system to help minimize the adverse impacts of air pollution.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3