Seasonal and Diurnal Cycles of Surface Boundary Layer and Energy Balance in the Central Andes of Perú, Mantaro Valley

Author:

Flores-Rojas José LuisORCID,Cuxart JoanORCID,Piñas-Laura Manuel,Callañaupa Stephany,Suárez-Salas LuisORCID,Kumar Shailendra,Moya-Alvarez Aldo S.ORCID,SIlva YaminaORCID

Abstract

The present study presents a detailed analysis of the diurnal and monthly cycles the surface boundary layer and of surface energy balance in a sparse natural vegetation canopy on Huancayo observatory (12.04 ∘ S, 75.32 ∘ W, 3313 m ASL), which is located in the central Andes of Perú (Mantaro Valley) during an entire year (May 2018–April 2019). We used a set of meteorological sensors (temperature, relative humidity, wind) installed in a gradient tower 30 m high, a set of radiative sensors to measure all irradiance components, and a set of tensiometers and heat flux plate to measure soil moisture, soil temperatures and soil heat flux. To estimate turbulent energy fluxes (sensible and latent), two flux–gradient methods: the aerodynamic method and the Bowen-ratio energy-balance method were used. The ground heat flux at surface was estimated using a molecular heat transfer equation. The results show minimum mean monthly temperatures and more stable conditions were observed in June and July before sunrise, while maximum mean monthly temperatures in October and November and more unstable conditions in February and March. From May to August inverted water vapor profiles near the surface were observed (more intense in July) at night hours, which indicate a transfer of water vapor as dewfall on the surface. The patterns of wind direction indicate well-defined mountain–valley circulation from south-east to south-west especially in fall–winter months (April–August). The maximum mean monthly sensible heat fluxes were found in June and September while minimum in February and March. Maximum mean monthly latent heat fluxes were found in February and March while minimum in June and July. The surface albedo and the Bowen ratio indicate semi-arid conditions in wet summer months and extreme arid conditions in dry winter months. The comparisons between sensible heat flux ( Q H ) and latent heat flux ( Q E ), estimated by the two methods show a good agreement (R 2 above 0.8). The comparison between available energy and the sum of Q E and Q H fluxes shows a good level of agreement (R 2 = 0.86) with important imbalance contributions after sunrise and around noon, probably by advection processes generated by heterogeneities on the surface around the Huancayo observatory and intensified by the mountain–valley circulation.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3