Estimation of CO2 Emissions from Wildfires Using OCO-2 Data

Author:

Guo ,Li ,Wen ,Huang

Abstract

The biomass burning model (BBM) has been the most widely used method for estimation of trace gas emissions. Due to the difficulty and variability in obtaining various necessary parameters of BBM, a new method is needed to quickly and accurately calculate the trace gas emissions from wildfires. Here, we used satellite data from the Orbiting Carbon Observatory-2 (OCO-2) to calculate CO2 emissions from wildfires (the OCO-2 model). Four active wildfires in Siberia were selected in which OCO-2 points intersecting with smoke plumes identified by Aqua MODIS (MODerate-resolution Imaging Spectroradiometer) images. MODIS band 8, band 21 and MISR (Multi-angle Imaging SpectroRadiometer) data were used to identify the smoke plume area, burned area and smoke plume height, respectively. By contrast with BBM, which calculates CO2 emissions based on the bottom–top mode, the OCO-2 model estimates CO2 emissions based on the top–bottom mode. We used a linear regression model to compute CO2 concentration (XCO2) for each smoke plume pixel and then calculated CO2 emissions for each wildfire point. The CO2 mass of each smoke plume pixel was added to obtain the CO2 emissions from wildfires. After verifying our results with the BBM, we found that the biases were between 25.76% and 157.11% for the four active fires. The OCO-2 model displays the advantages of remote-sensing technology and is a useful tool for fire-emission monitoring, although we note some of its disadvantages. This study proposed a new perspective to estimate CO2 emissions from wildfire and effectively expands the applied range of OCO-2 satellite data.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3