A Hierarchy of Probability, Fluid and Generalized Densities for the Eulerian Velocivolumetric Description of Fluid Flow, for New Families of Conservation Laws

Author:

Niven RobertORCID

Abstract

The Reynolds transport theorem occupies a central place in continuum mechanics, providing a generalized integral conservation equation for the transport of any conserved quantity within a fluid or material volume, which can be connected to its corresponding differential equation. Recently, a more generalized framework was presented for this theorem, enabling parametric transformations between positions on a manifold or in any generalized coordinate space, exploiting the underlying continuous multivariate (Lie) symmetries of a vector or tensor field associated with a conserved quantity. We explore the implications of this framework for fluid flow systems, based on an Eulerian velocivolumetric (position-velocity) description of fluid flow. The analysis invokes a hierarchy of five probability density functions, which by convolution are used to define five fluid densities and generalized densities relevant to this description. We derive 11 formulations of the generalized Reynolds transport theorem for different choices of the coordinate space, parameter space and density, only the first of which is commonly known. These are used to generate a table of integral and differential conservation laws applicable to each formulation, for eight important conserved quantities (fluid mass, species mass, linear momentum, angular momentum, energy, charge, entropy and probability). The findings substantially expand the set of conservation laws for the analysis of fluid flow and dynamical systems.

Funder

UNSW, Australia

Institute Pprime/CNRS, Poitiers, France

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference83 articles.

1. Reynolds, O. Papers on Mechanical and Physical Subjects, 1903. Volume III.

2. De Groot, S.R., and Mazur, P. Non-Equilibrium Thermodynamics, 1962.

3. White, F.M. Fluid Mechanics, 1986.

4. Bird, R.B., Stewart, W.E., and Lightfoot, E.N. Transport Phenomena, 2006.

5. Durst, F. Fluid Mechanics, An Introduction to the Theory of Fluid Flows, 2008.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3