The Effects of Hydroxypropyl Methyl Cellulose and Metakaolin on the Properties of Self-Compacting Solidified Soil Based on Abandoned Slurry

Author:

Tang Liang1,Huang Kaijian1,Shen Gong2,Miao Yixin2,Wu Jiansheng3

Affiliation:

1. College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China

2. Wuxi Communications Construction Engineering Group Co., Ltd., Wuxi 214000, China

3. Nanjing Kegong Coal Science and Technology Research Co., Ltd., Nanjing 210037, China

Abstract

As a new type of backfill material, Self-compacting solidified soil (SCSS) takes the abandoned slurry of cast-in-place piles after dewatering and reduction as the main raw material, which brings a problem of coordinating the working performance with the mechanical property under the condition of high mobility. In this paper, hydroxypropyl methyl cellulose (HPMC) and metakaolin were introduced as additives to solve this problem. First, the workability and mechanical properties of SCSS were regulated and optimized by means of the water seepage rate test, the flowability test, and the unconfined compressive strength test. Second, this study also used X-ray diffraction (XRD) and scanning electron microscopy (SEM) to investigate the effects of HPMC and metakaolin on the physical phase and microstructure of SCSS. In this way, the results showed that there was a significant impact on the flowability of SCSS, that is, when the dosage reached 0.3%, the water seepage rate of SCSS was reduced to less than 1%, and the compressive strength at 7 days reached its peak. At the same time, HPMC weakened the strength growth of SCSS in the age period of 7 days to 14 days. However, the addition of metakaolin promoted its compressive strength. XRD analysis showed that the additives had no significant effects on the physical phases. And, from the SEM results, it can be seen that although the water-retaining effect of HPMC makes hydration of cement more exhaustive, more ettringite (AFt) can be observed in the microstructure. In addition, it can be observed that the addition of metakaolin can generate more hydrated calcium silicate (C-S-H) due to the strong surface energy possessed by metakaolin. As a result of the above factors, SCSS filled the voids between particles and improved the interface structure between particles, thus enhanced the compressive strength.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3