Study of Coating Growth Direction of 6061 Aluminum Alloy in Soft Spark Discharge of Plasma Electrolytic Oxidation

Author:

Wang Wenqiang1ORCID,Yang Yifeng1,Liu Cancan1,Chen Bo1ORCID,Chen Xuanyu1ORCID,Wang Hao1,Tong Rui1,Zhou Shiquan1

Affiliation:

1. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China

Abstract

Conventional plasma electrolytic oxidation treatments produce oxide coatings with micron-scale discharge pores, resulting in insulation and wear and corrosion resistance far below that expected of highly dense Al2O3 coatings. The introduction of cathodic polarization during the plasma electrolytic oxidation process, especially when the applied cathode-to-anode current ratio (Rpn) is greater than 1, triggers a unique plasma discharge phenomenon known as “soft sparking”. The soft spark discharge mode significantly improves the densification of the anode ceramic layer and facilitates the formation of the high-temperature α-Al2O3 phase within the coating. Although the soft spark discharge phenomenon has been known for a long time, the growth behavior of the coating under its discharge mode still needs to be studied and improved. In this paper, the growth behavior of the coating before and after soft spark discharge is investigated with the help of the micro-morphology, phase composition and element distribution of a homemade fixture. The results show that the ceramic layer grows mainly along the oxide–electrolyte direction before the soft spark discharge transformation; after the soft spark discharge, the ceramic layer grows along the oxide–substrate direction. It was also unexpectedly found that, under soft spark discharge, the silicon element only exists on the outside of the coating, which is caused by the large size and slow migration of SiO32−, which can only enter the ceramic layer and participate in the reaction through the discharge channel generated by the strong discharge. In addition, it was also found that the relative phase content of α-Al2O3 in the coating increased from 0.487 to 0.634 after 10 min of rotary spark discharge, which is an increase of 30.2% compared with that before the soft spark discharge transition. On the other hand, the relative phase content of α-Al2O3 in the coating decreased from 0.487 to 0.313 after 20 min of transfer spark discharge, which was a 55.6% decrease compared to that before the soft spark discharge transformation.

Funder

Priority Academic Program Development of Jiangsu Higher Education Institutions [PAPD]

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3