Mechanical Behavior of 3D-Printed Thickness Gradient Honeycomb Structures

Author:

Yang Dongxia1ORCID,Guo Lihua1,Fan Changsheng2

Affiliation:

1. Key Laboratory of Heilongjiang Underground Engineering Technology, Harbin University, Harbin 150086, China

2. Laboratory of Bio-Based Material Science &Technology of Ministry of Education, College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China

Abstract

In order to obtain a lightweight, high-strength, and customizable cellular structure to meet the needs of modern production and life, the mechanical properties of four thickness gradient honeycomb structures were studied. In this paper, four types of honeycomb structure specimens with the same porosity and different Poisson’s ratios were designed and manufactured by using SLA 3D-printing technology, including the honeycomb, square honeycomb, quasi-square honeycomb, and re-entrant honeycomb structures. Based on the plane compression mechanical properties and failure mode analysis of these specimens, the thickness gradient is applied to the honeycomb structure, and four structural forms of the thickness gradient honeycomb structure are formed. The experimental results show that the thickness gradient honeycomb structure exhibits better mechanical properties than the honeycomb structure with a uniform cellular wall thickness. In the studied thickness gradient honeycomb structure, the mechanical properties of the whole structure can be significantly improved by increasing the thickness of cell walls at the upper and lower ends of the structure. The wall thickness, arrangement order, shape, and Poisson’s ratio of the cell all have a significant impact on the mechanical properties of the specimens. These results provide an effective basis for the design and application of cellular structures in the future.

Funder

Heilongjiang Province postdoctoral research startup Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3