Wood Polymer Composite Based on Poly-3-hydroxybutyrate-3-hydroxyvalerate (PHBV) and Wood Flour—The Process Optimization of the Products

Author:

Frącz Wiesław1ORCID,Pacana Andrzej2ORCID,Siwiec Dominika2ORCID,Janowski Grzegorz1ORCID,Bąk Łukasz1ORCID,Szawara Paulina1ORCID

Affiliation:

1. Department of Materials Forming and Processing, Rzeszow University of Technology, Powstancow Warszawy 8, 35-959 Rzeszow, Poland

2. Department of Manufacturing Processes and Production Engineering, Rzeszow University of Technology, Powstancow Warszawy 8, 35-959 Rzeszow, Poland

Abstract

This study involved the optimization of the molded pieces manufacturing process from a poly-3-hydroxybutyrate-co-3-hydroxyvalerate biocomposite containing 30% wood flour by mass. The amount of wood flour and preliminary processing parameters were determined on the basis of preliminary tests. The aim of the optimization was to find the configuration of important parameters of the injection process to obtain molded pieces of good quality, in terms of aesthetics, dimensions, and mechanical properties. The products tested for quality were dog bone specimens. The biocomposite was produced using a single-screw extruder, whereas molded pieces were made using an injection molding process. The Taguchi method was applied to optimize the injection molding parameters, which determine the products quality. Control factors were selected at three levels. The L27 orthogonal plan was used. For each set of input parameters from this plan, four processing tests were performed. The sample weight, shrinkage, elongation at break, tensile strength, and Young’s modulus were selected to assess the quality of the molded parts. As a result of the research, the processing parameters of the tested biocomposite were determined, enabling the production of good-quality molded pieces. No common parameter configuration was found for different optimization criteria. Further research should focus on finding a different range of technological parameters. At the same time, it was found that the range of processing parameters of the produced biocomposite, especially processing temperature, made it possible to use it in the Wood Polymer Composites segment.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3