Recovery of Metal Ions (Cd2+, Co2+, and Ni2+) from Nitrate and Sulfate on Laser-Induced Graphene Film Using Applied Voltage and Its Application

Author:

Wang Xiu-man12,Su Tong3,Chai Yujun3

Affiliation:

1. State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, China

2. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China

3. College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China

Abstract

The urgent removal of Cd, Co, and Ni from nitrate and sulfate is essential to mitigate the potential risk of chemical pollution from large volumes of industrial wastewater. In this study, these metal ions were rapidly recovered through applying voltage on nitrate and sulfate, utilizing laser-induced graphene/polyimide (LIG/PI) film as the electrode. Following the application of external voltage, both the pH value and conductivity of the solution undergo changes. Compared to Co2+ and Ni2+, Cd2+ exhibits a lower standard electrode potential and stronger reducibility. Consequently, in both nitrate and sulfate solutions, the reaction sequence follows the order of Cd2+ > Co2+ > Ni2+, with the corresponding electrode adsorption quantities in the order of Cd2+ > Co2+ ~ Ni2+. Additionally, using the recovered Co(OH)2 as the raw material, a LiCoO2 composite was prepared. The assembled battery with this composite exhibited a specific capacity of 122.8 mAh g−1, meeting practical application requirements. This research has significance for fostering green development.

Publisher

MDPI AG

Reference27 articles.

1. Precise separation of spent lithium ion cells in water without discharging for recycling;Zhao;Energy Storage Mater.,2022

2. The current process for the recycling of spent lithium ion batteries;Zhou;Front. Chem.,2021

3. Pyrometallurgical technology in the recycling of a spent lithium ion battery: Evolution and the challenge;Li;Processes,2021

4. Progresses in sustainable recycling technology of spent lithium-ion batteries;Du;Energy Environ. Mater.,2022

5. A sustainable closed-loop method of selective oxidation leaching and regeneration for lithium iron phosphate cathode materials from spent batteries;Gong;J. Environ. Manage.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3