Spatiotemporal Distribution Pattern of Phytoplankton Community and Its Main Driving Factors in Dongting Lake, China—A Seasonal Study from 2017 to 2019

Author:

Yin Xueyan,Yan Guanghan,Wang Xing,Huang Daizhong,Li Liqiang

Abstract

As it is the second-largest freshwater lake downstream of the Three Gorges Dam and an important international wetland for migratory birds, there have been concerns about the ecological water health of Dongting Lake for a long time. In the present study, we studied the evolutionary characteristics of water quality in Dongting Lake in three recent years. Moreover, the evolution rules and dominant groups of the phytoplankton community were explored, and the major influencing factors of phytoplankton and their distribution were assessed based on the field survey and detection data from 2017 to 2019. The results indicated that the water quality of Dongting Lake improved in recent years. The concentration of dissolved oxygen (DO) increased by 6.91%, whereas the concentrations of the five-day biochemical oxygen demand (BOD5), chemical oxygen demand (CODCr), ammonia nitrogen (NH4+–N), total phosphorus (TP), and total nitrogen (TN) decreased by 17.5%, 13.0%, 33.8%, 7.6%, and 13.3%, respectively. The mean phytoplankton density reached 4.15 × 105 cells·L−1 in September 2017, whereas it was only 1.62 × 105 cells·L−1 in December 2018. There were 15 dominant species belonging to Cyanobacteria, Chlorophyta, Bacillariophyta, Cryptophyta, and Miozoa. Moreover, Fragilaria radians (Kützing) D.M.Williams & Round and Aulacoseiragranulata (Ehrenberg) Simonsen were the dominant populations in all seasons. The Pearson and linear regression analysis also indicated that the composition and distribution of phytoplankton in Dongting Lake were mainly affected by electrical conductivity (Cond), BOD5, potassium permanganate (CODMn), and CODCr, especially in Eastern Dongting Lake. Of course, NH4+–N, TN, and TP were also the main factors affecting the density and species of the phytoplankton community, especially in Western Dongting Lake. Finally, we suggested that local government could take “The relationship between Yangtze River and Dongting Lake”, “The relationship between the seven fed rivers and Dongting Lake”, and “The relationship between human activities and Dongting Lake” as the breakthrough points to guarantee the ecological flow, water environment, and ecological quality of Dongting Lake.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3