Express Method for Assessing Performance of Lubricant Compositions Containing Nano-Additives Used for Wheel–Rail Pairs

Author:

Kosarchuk Valerii1ORCID,Chausov Mykola2,Tverdomed Volodymyr1,Lopatko Kostyantyn2,Lukoševičius Vaidas3ORCID

Affiliation:

1. Faculty of Infrastructure and Rolling Stock of Railways, State University of Infrastructure and Technologies, Kyrylivska Str. 9, 04071 Kyiv, Ukraine

2. Faculty of Mechanical Engineering and Design, National University of Life and Environmental Sciences of Ukraine, Heroiv Oborony Str. 15, 03041 Kyiv, Ukraine

3. Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu Str. 56, 51424 Kaunas, Lithuania

Abstract

An express method for assessing the effectiveness of lubricating compositions with nano-additives of various chemical compositions is proposed, and a joint analysis of experimental data on the changes in the value of wear and the level of damage to the surface layers of metallic friction pairs was performed. The variation in the current relative hardness of the sample’s surface, the variation in the current relative material damage level, the current value of wear, and the current level of the coefficient of friction were chosen as the key parameters to conduct a performance assessment. The level of material damage in the contact zone was determined using the parameters of the statistical law of hardness value scattering. Based on an analysis of data in the literature, it was observed that the structural changes occurring in metallic materials during long-term, cyclic, static, and frictional loading are correlated with changes in the statistical characteristics of the hardness scattering results. An experimental substantiation of the proposed method was carried out for steel-sliding friction pairs using lubricating compositions based on Greaseline Lithium BIO Rail 000 oil manufactured by AIMOL with nano-additives of copper, magnesium and aluminum alloys, graphite, and two grades of medium-carbon steel. According to the system of indicators presented in this research, the greatest efficiency (in terms of increasing the wear resistance of friction steel pairs) was achieved with lubricating compositions including nano-powder additives made of steel, which have lower hardness. For the friction experiments, where the determining factor was abrasive wear, such lubricants ensured minimal damage and wear to the friction surface, while the value of the friction coefficient was maintained at a level that is optimal for wheel–rail friction pairs.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3