Effect of Salt Solution Erosion on Mechanical Properties and Micropore Structure of Recycled Fine Aggregate ECC

Author:

Xiang Yuanhang1,Han Fengxia12,Liu Qing12

Affiliation:

1. School of Architectural Engineering, Xinjiang University, Urumqi 830046, China

2. Key Laboratory of Building Structure and Seismic Resistance of Xinjiang, Urumqi 830017, China

Abstract

This study examined the impact of sulfate and sulfate–chloride dry–wet cyclic erosion on the mechanical properties and microscopic pore structure of engineered cementitious composite (ECC) with recycled fine aggregate (RA). Uniaxial tensile tests and four-point bending tests were conducted to evaluate the mechanical properties of RAECC, while the resonance frequency ratio was used to assess the integrity of the specimens. Finally, X-ray computed tomography (X-CT) reconstruction was employed to analyze the erosion effects on the microscopic pore structure. The results showed that the uniaxial tensile strength and flexural strength of the RAECC specimens in corrosive solution first increased and then decreased, and the 5% Na2SO4 solution caused the most serious erosion of the specimens. The resonance frequency ratio of the specimens reached the peak value when they were subjected to dry–wet cycles 15 times in the 5% Na2SO4 solution. During the erosion process, the pore space of the specimen first decreased and then increased, and the number of pores increased. The erosion process is the result of the erosion products continuously filling and eventually destroying the pores, and the erosion damage produces a large number of new pores and poor sphericity, leading to a decline in mechanical properties.

Funder

Key Research and Development Program Plan Project for Projects of Xinjiang Uygur Autonomous Region

National Natural Science Foundation, Youth Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3