Affiliation:
1. School of Architectural Engineering, Xinjiang University, Urumqi 830046, China
2. Key Laboratory of Building Structure and Seismic Resistance of Xinjiang, Urumqi 830017, China
Abstract
This study examined the impact of sulfate and sulfate–chloride dry–wet cyclic erosion on the mechanical properties and microscopic pore structure of engineered cementitious composite (ECC) with recycled fine aggregate (RA). Uniaxial tensile tests and four-point bending tests were conducted to evaluate the mechanical properties of RAECC, while the resonance frequency ratio was used to assess the integrity of the specimens. Finally, X-ray computed tomography (X-CT) reconstruction was employed to analyze the erosion effects on the microscopic pore structure. The results showed that the uniaxial tensile strength and flexural strength of the RAECC specimens in corrosive solution first increased and then decreased, and the 5% Na2SO4 solution caused the most serious erosion of the specimens. The resonance frequency ratio of the specimens reached the peak value when they were subjected to dry–wet cycles 15 times in the 5% Na2SO4 solution. During the erosion process, the pore space of the specimen first decreased and then increased, and the number of pores increased. The erosion process is the result of the erosion products continuously filling and eventually destroying the pores, and the erosion damage produces a large number of new pores and poor sphericity, leading to a decline in mechanical properties.
Funder
Key Research and Development Program Plan Project for Projects of Xinjiang Uygur Autonomous Region
National Natural Science Foundation, Youth Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献