Smart Methods to Deal with COVID-19 at University-Level Institutions Using Social Network Analysis Techniques

Author:

Malick Rauf Ahmed Shams1ORCID,Hasan Syed Kashir1,Samad Fahad1ORCID,Khan Nadeem Kafi1ORCID,Syed Hassan Jamil23ORCID

Affiliation:

1. FAST School of Computing, National University Computer and Emerging Sciences, Karachi 54700, Pakistan

2. Faculty of Computing and Informatics, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia

3. Cyber Security Research Group, Faculty of Computing and Informatics, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia

Abstract

The current global health crisis is a consequence of the pandemic caused by COVID-19. It has impacted the lives of people from all factions of society. The re-emergence of new variants is threatening the world, which urges the development of new methods to prevent rapid spread. Places with more extensive social dealings, such as offices, organizations, and educational institutes, have a greater tendency to escalate the viral spread. This research focuses on developing a strategy to find out the key transmitters of the virus, particularly at educational institutes. The reason for considering educational institutions is the severity of the educational needs and the high risk of rapid spread. Educational institutions offer an environment where students come from different regions and communicate with each other at close distances. To slow down the virus’s spread rate, a method is proposed in this paper that differs from vaccinating the entire population or complete lockdown. In the present research, we identified a few key spreaders, which can be isolated and can slow down the transmission rate of the contagion. The present study creates a student communication network, and virus transmission is modeled over the predicted network. Using student-to-student communication data, three distinct networks are generated to analyze the roles of nodes responsible for the spread of this contagion. Intra-class and inter-class networks are generated, and the contagion spread was observed on them. Using social network strategies, we can decrease the maximum number of infections from 200 to 70 individuals, with contagion lasting in the network for 60 days.

Funder

Research Management Centre (RMC), Universiti Malaysia Sabah

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3