Solution Procedure for Fractional Casson Fluid Model Considered with Heat Generation and Chemical Reaction

Author:

Sene Ndolane1ORCID

Affiliation:

1. Section Mathematics and Statistics, Institut des Politiques Publiques, Cheikh Anta Diop University, Dakar 5005, Senegal

Abstract

In this work, the objective is to get the exact analytical solution of a generalized Casson fluid model with heat generation and chemical reaction described by the Caputo fractional operator, using the approach that the Laplace transform method includes the Laplace transform of the Caputo derivative. After the exact solution, it will be studied the impact of the order of the fractional derivative and the most essential parameters included in the modeling like the Prandtl number, the thermal Grashof number, the mass Grashof number, the Schmidt number, the heat generation parameter, and the chemical reaction parameter. The physical points of view of the influence will be discussed and analyzed. The findings of the paper will be illustrated by several graphics. The development in industry and engineering science, it makes important to study the flow behavior of non-Newtonian fluids. The domains of applications of the flow behavior of non-Newtonian fluids are diverse such as geophysics, biorheology, and chemical and petroleum industries.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3