Integrating Spatial and Temporal Information for Violent Activity Detection from Video Using Deep Spiking Neural Networks

Author:

Wang Xiang1ORCID,Yang Jie1,Kasabov Nikola K.2ORCID

Affiliation:

1. Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai 200400, China

2. Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Auckland 1020, New Zealand

Abstract

Increasing violence in workplaces such as hospitals seriously challenges public safety. However, it is time- and labor-consuming to visually monitor masses of video data in real time. Therefore, automatic and timely violent activity detection from videos is vital, especially for small monitoring systems. This paper proposes a two-stream deep learning architecture for video violent activity detection named SpikeConvFlowNet. First, RGB frames and their optical flow data are used as inputs for each stream to extract the spatiotemporal features of videos. After that, the spatiotemporal features from the two streams are concatenated and fed to the classifier for the final decision. Each stream utilizes a supervised neural network consisting of multiple convolutional spiking and pooling layers. Convolutional layers are used to extract high-quality spatial features within frames, and spiking neurons can efficiently extract temporal features across frames by remembering historical information. The spiking neuron-based optical flow can strengthen the capability of extracting critical motion information. This method combines their advantages to enhance the performance and efficiency for recognizing violent actions. The experimental results on public datasets demonstrate that, compared with the latest methods, this approach greatly reduces parameters and achieves higher inference efficiency with limited accuracy loss. It is a potential solution for applications in embedded devices that provide low computing power but require fast processing speeds.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3