Research on a Super-Resolution and Low-Complexity Positioning Algorithm Using FMCW Radar Based on OMP and FFT in 2D Driving Scene

Author:

Guo Yiran1,Shen Qiang2,Deng Zilong1,Zhang Shouyi1

Affiliation:

1. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China

2. Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China

Abstract

Multitarget positioning technology, such as FMCW millimeter-wave radar, has broad application prospects in autonomous driving and related mobile scenarios. However, it is difficult for existing correlation algorithms to balance high resolution and low complexity, and it is also difficult to ensure the robustness of the positioning algorithm using an aging antenna. This paper proposes a super-resolution and low-complexity positioning algorithm based on the orthogonal matching pursuit algorithm that can achieve more accurate distance and angle estimation for multiple objects in a low-SNR environment. The algorithm proposed in this paper improves the resolving power by two and one orders of magnitude, respectively, compared to the classical FFT and MUSIC algorithms in the same signal-to-noise environment, and the complexity of the algorithm can be reduced by about 25–30%, with the same resolving power as the OMP algorithm. Based on the positioning algorithm proposed in our paper, we use the PSO algorithm to optimize the arrangement of an aging antenna array so that its angle estimation accuracy is equivalent to that observed when the antenna is intact, improving the positioning algorithm’s robustness. This paper also further realizes the use of the proposed algorithm and a single-frame intermediate frequency signal to estimate the position angle information of the object and obtain its motion trajectory and velocity, verifying the proposed algorithm’s estimation ability when it comes to these qualities in a moving scene. Furthermore, this paper designs and carries out simulations and experiments. The experimental results verify that the positioning algorithm proposed in this paper can achieve accuracy, robustness, and real-time performance in autonomous driving scenarios.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3