Affiliation:
1. School of Architecture, Beijing University of Agriculture, Beijing 102206, China
2. Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
Abstract
Sorbus pohuashanensis (Hance) Hedl. is an important forestry species valued for its ornamental, medicinal, and ecological properties. Polyploidy breeding is an important method of germplasm innovation; however, polyploidy induction and phenotypic variation caused by chromosome doubling in S. pohuashanensis are poorly understood. In this study, S. pohuashanensis seeds were used to explore the effects of different colchicine concentrations, cold stratification times, and seeds from different sources on polyploidy induction. Ploidy levels of the regenerated plants were determined by flow cytometry. The results showed that the tetraploid induction effect of S. pohuashanensis seeds was significantly affected by colchicine concentration, and the highest tetraploid induction rate of 24.75% was achieved by immersion in 0.2% (w/v) colchicine for 48 h. After 2 years of induction, 77 tetraploid plants were obtained. Compared to diploids, tetraploid plants showed significant variations in plant height, leaf morphology (apical leaflet width, middle leaflet width), and diameter of the middle petiole. The stomatal size and chloroplast number increased with chromosome doubling whereas the stomatal number and density decreased. In addition, significant differences in the percentage of sunburn associated with ploidy changes were observed. This study provides a technique for tetraploid induction of S. pohuashanensis seeds, showing the variation in traits caused by polyploidization and the effect of chromosome doubling on sunburn resistance. Tetraploidy induction provides a new direction for S. pohuashanensis germplasm innovation.
Funder
R&D Program of Beijing Municipal Education Commission
The Subject of Key R&D Plan of Shandong Province
Mining and Accurate Identification of Forest Tree Germplasm Resources
Program of Beijing Agricultural University Young Teachers
National Key Research and Development Program
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献