Time-Varying Pattern and Prediction Model for Geopolymer Mortar Performance under Seawater Immersion

Author:

Wu Yingjie1ORCID,Du Kun1ORCID,Wu Chengqing2,Tao Ming1,Zhao Rui1

Affiliation:

1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China

2. School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia

Abstract

In this study, immersion experiments were conducted on the geopolymer mortar (GPM) by using artificial seawater, and the effects of alkali equivalent (AE) and waterglass modulus (WGM) on the resistance of geopolymer mortar (GPM) to seawater immersion were analyzed. The test subjected 300 specimens to 270 days of artificial seawater immersion and periodic performance tests. Alkali equivalent (AE) (3–15%) and waterglass modulus (WGM) (1.0–1.8) were employed as influencing factors, and the mass loss and uniaxial compressive strength (UCS) were used as the performance evaluation indexes, combined with X-ray diffraction (XRD) and scanning electron microscopy (SEM) to analyze the time-varying pattern of geopolymer mortar (GPM) performance with seawater immersion. The findings demonstrated a general trend of initially growing and then declining in the uniaxial compression strength (UCS) of geopolymer mortar (GPM) under seawater immersion. The resistance of geopolymer mortar (GPM) to seawater immersion decreased with both higher or lower alkali equivalent (AE), and the ideal range of alkali equivalent (AE) was 9–12%. The diffusion layer of the bilayer structure of the waterglass particle became thinner with an increase in waterglass modulus (WGM), which ultimately led to the reduction in the resistance of the geopolymer structure to seawater immersion. Additionally, a support vector regression (SVR) model was developed based on the experimental data to predict the uniaxial compression strength (UCS) of GPM under seawater immersion. The model performed better and was able to achieve accurate prediction within 1–2 months, and provided an accurate approach to predicting the strength of geopolymer materials in a practical offshore construction project.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities of Central South University

Publisher

MDPI AG

Subject

General Materials Science

Reference43 articles.

1. Service life prediction of existing concrete structures exposed to marine environment;Maage;ACI Mater. J.,1996

2. Davidovits, J. (2013). Geopolymer Science and Technics, Geopolymer Institute.

3. Impact of sodium sulfate solution on mechanical properties and structure of fly ash based geopolymers;Mater. Struct.,2015

4. Geopolymer technology: The current state of the art;Duxson;J. Mater. Sci.,2007

5. Alkali-activated concrete mixes with ground granulated blast furnace slag and paper sludge ash in seawater environments;Mengasini;Sustain. Chem. Pharm.,2021

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3