Derivatives of Pyridazine with Phenoxazine and 9,9-Dimethyl-9,10-dihydroacridine Donor Moieties Exhibiting Thermally Activated Delayed Fluorescence

Author:

Skhirtladze Levani1,Bezvikonnyi Oleksandr12,Keruckienė Rasa1ORCID,Dvylys Lukas1,Mahmoudi Malek1ORCID,Labanauskas Linas3,Ariffin Azhar4ORCID,Grazulevicius Juozas V.1

Affiliation:

1. Department of Polymer Chemistry and Technology, Faculty of Chemical Technology, Kaunas University of Technology, LT-51423 Kaunas, Lithuania

2. Department of Physics, Faculty of Mathematics and Natural Science, Kaunas University of Technology, LT-51369 Kaunas, Lithuania

3. Center for Physical Sciences & Technology, Department of Organic Chemistry, LT-10257 Vilnius, Lithuania

4. Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia

Abstract

Two compounds based on pyridazine as the acceptor core and 9,9-dimethyl-9,10-dihydroacridine or phenoxazine donor moieties were designed and synthesized by Buchwald–Hartwig cross-coupling reaction. The electronic, photophysical, and electrochemical properties of the compounds were studied by ultraviolet-visible spectroscopy (UV-vis), photoluminescence spectrometry, differential scanning calorimetry, thermogravimetric analysis, and cyclic voltammetry. The compounds are characterized by high thermal stabilities. Their 5% weight loss temperatures are 314 and 336 °C. Complete weight loss of both pyridazine-based compounds was detected by TGA, indicating sublimation. The derivative of pyridazine and 9,9-dimethyl-9,10-dihydroacridine is capable of glass formation. Its glass transition temperature is 80 °C. The geometries and electronic characteristics of the compounds were substantiated using density functional theory (DFT). The compounds exhibited emission from the intramolecular charge transfer state manifested by positive solvatochromism. The emission in the range of 534–609 nm of the toluene solutions of the compounds is thermally activated delayed fluorescence with lifetimes of 93 and 143 ns, respectively.

Funder

European Union’s Horizon 2020 Research and Innovation Programme

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3