Optimization of Hexagonal Structure for Enhancing Heat Transfer in Storage System

Author:

Raźny Natalia1ORCID,Dmitruk Anna1ORCID,Nemś Artur2ORCID,Nemś Magdalena2ORCID,Naplocha Krzysztof1

Affiliation:

1. Department of Lightweight Elements Engineering, Foundry and Automation, Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

2. Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

Abstract

Thermal performance was tested during cycling work for latent heat storage systems based on KNO3 and NaNO3 (weight ratio 54:46). For heat transfer improvement, cast aluminum honeycomb-shaped structures were produced via 3D printing of polymer model and investment casting. Different wall thicknesses were tested at 1.2 mm and 1.6 mm. The obtained results were compared to working cycles of pure PCM bed. The use of enhancers is reported to improve the rate of charging and discharging of the deposit. In the next step, the structures were examined with numerical simulation performed with ANSYS Fluent software. The wall thicknesses taken into consideration were the following: 0.8, 1.2, 1.6, and 2.0 mm. An insert with a greater wall thickness allows for smaller dT/dt and better heat distribution in the vessel. The investment casting process enables the manufacturing of complex structures of custom shapes without porosity and contamination.

Publisher

MDPI AG

Subject

General Materials Science

Reference32 articles.

1. Review on Thermal Energy Storage with Phase Change Materials and Applications;Sharma;Renew. Sustain. Energy Rev.,2009

2. Recent Advances in Heat Transfer Enhancements: A Review Report;Khaled;Int. J. Chem. Eng.,2010

3. Thermal Performance Evaluation of a Solar Air Heater Integrated with Helical Tubes Carrying Phase Change Material;Saxena;J. Energy Storage,2020

4. The Heat Transfer Enhancement Techniques and Their Thermal Performance Factor;Maradiya;Beni-Suef Univ. J. Basic Appl. Sci.,2018

5. Heat Transfer Enhancement Technique in Heat Exchanger: An Overview;Shriwas;Int. J. Res. Trends Innov.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3