Towards Highly Efficient, Additively Manufactured Passive Vibration Eliminators for Mechanical Systems

Author:

Irska Izabela1ORCID,Kramek Grzegorz1,Miądlicki Karol1ORCID,Dunaj Paweł1ORCID,Berczyński Stefan1ORCID,Piesowicz Elżbieta1ORCID

Affiliation:

1. Department of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Szczecin, al. Piastów 19, 70-310 Szczecin, Poland

Abstract

Structural damping largely determines the dynamic properties of mechanical structures, especially those whose functioning is accompanied by time-varying loads. These loads may cause vibrations of a different nature, which adversely affects the functionality of the structure. Therefore, many studies have been carried out on vibration reduction methods over the last few years. Among them, the passive vibration damping method, wherein a suitable polymer system with appropriate viscoelastic properties is used, emerges as one of the simplest and most effective methods. In this view, a novel approach to conduct passive elimination of vibrations, consisting of covering elements of structures with low dynamic stiffness with polymeric pads, was developed. Herein, polymer covers were manufactured via fused filament fabrication technology (3D printing) and were joined to the structure by means of a press connection. Current work was focused on determining the damping properties of chosen polymeric materials, including thermoplastic elastomers (TPE). All investigated materials were characterized by means of differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and mechanical properties (tensile test and Shore hardness). Lastly, the damping ability of pads made from different types of polymers were evaluated by means of dynamic tests.

Funder

European Regional Development Fund

Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3