Affiliation:
1. School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
Abstract
Considering the elastic–plastic deformation, the wave propagations and energy transmissions of the one-dimensional three-segment composite granular chain are studied. The axial symmetry model for elastic-perfectly plastic materials is built by using the finite element method. Six materials with different yield strengths are selected for the adjustable segment. The results show that the repeated loading and unloading behaviors, as well as the wave propagations in the elastic–plastic granular chain, are complex and significantly different from those in the purely elastic granular chain. The yield strength of the granular materials in the adjustable segment has significant effects on energy dissipation and wave velocity, which could be used to design the impact buffer. The studies show that taking lower yield strength for the adjustable part than the non-adjustable part, the energy dissipation could be increased, and the wave velocity could be reduced, then the arrival time of the impact waves could be delayed. These characteristics of the elastic–plastic granular chain could be used to design metamaterials for impact absorbers in impact protection.
Funder
National Natural Science Foundation of China
Postdoctoral Research Funding Program of Jiangsu province
Postgraduate Research & Practice Innovation Program of Jiangsu Province
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献