Manufacturing of Metal–Diamond Composites with High-Strength CoCrCuxFeNi High-Entropy Alloy Used as a Binder

Author:

Loginov Pavel A.1ORCID,Fedotov Alexander D.1,Mukanov Samat K.1ORCID,Manakova Olga S.1ORCID,Zaitsev Alexander A.1ORCID,Akhmetov Amankeldy S.1ORCID,Rupasov Sergey I.1,Levashov Evgeny A.1ORCID

Affiliation:

1. Department of Powder Metallurgy and Functional Coatings, National University of Science and Technology “MISiS”, Leninsky Prospekt 4, 119049 Moscow, Russia

Abstract

This paper focuses on the study of the structure and mechanical properties of CoCrCuxFeNi high-entropy alloys and their adhesion to single diamond crystals. CoCrCuxFeNi alloys were manufactured by the powder metallurgy route, specifically via mechanical alloying of elemental powders, followed by hot pressing. The addition of copper led to the formation of a dual-phase FCC + FCC2 structure. The CoCrCu0.5FeNi alloy exhibited the highest ultimate tensile strength (1080 MPa). Reductions in the ductility of the CoCrCuxFeNi HEAs and the tendency for brittle fracture behavior were observed at high copper concentrations. The equiatomic alloys CoCrFeNi and CoCrCuFeNi demonstrated high adhesion strength to single diamond crystals. The diamond surface at the fracture of the composites having the CoCrFeNi matrix had chromium-rich metal matrix regions, thus indicating that chromium carbide, responsible for adhesion, was formed at the composite–diamond interface. Copper-rich areas were detected on the diamond surface within the composites having the CoCrCuFeNi matrix due to the predominant precipitation of the FCC2 phase at the interfaces or the crack propagation along the FCC/FCC2 interface, resulting in the exposure of the Cu-rich FCC2 phase on the surface.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

Reference56 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3