Investigation of Surface Degradation of Aged High Temperature Vulcanized (HTV) Silicone Rubber Insulators

Author:

Shaik Mohamed GhouseORCID,Karuppaiyan Vijayarekha

Abstract

Polymeric composite insulators are subjected to varying work conditions like rain and heat, which create an impact on degradation during their long service period. Electrical tracking under the Alternating Current (AC) field plays a predominant role in surface degradation, which can be different for fresh and aged insulations. The tracking studies on the fresh and aged polymeric insulation therefore become significant. Motivated by this, an indigenous low-cost electrical tracking setup was developed, and the tracking studies were carried out as per International Electro technical Commission standard (IEC) 60587 on fresh, thermal-aged and water-aged silicone rubber samples. Contact angles of samples were measured to analyse the effect of ageing on hydrophobicity. Further, to analyse the influence of ageing on insulation integrity, tracking tests were conducted and parameters like leakage current pattern and magnitudes, tracking length and loss of weight in the material due to tracking were examined. The physicochemical impacts of ageing on the surface degradation of the samples were also analysed using X-ray diffraction analysis and Fourier Transform Infrared Spectroscopy analysis. The investigations added insight into the degradation mechanism of polymeric insulators in terms of their electrical performance and physicochemical changes in the material. Comparison of these changes showed that ageing could influence surface degradation of samples.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3