Chemical and Mineralogical Composition of Soot and Ash from the Combustion of Peat Briquettes in Household Boilers

Author:

Růžičková Jana,Kucbel MarekORCID,Raclavská Helena,Švédová BarboraORCID,Raclavský Konstantin,Šafář MichalORCID,Kantor Pavel

Abstract

Soot and ash as residues from the combustion of peat briquettes were analysed by chemical and mineralogical methods. The study aimed to characterize combustion in domestic boilers of two different emission classes. Ten samples of soot deposited in exhausting ways of boilers were obtained (five of each emission class). The analyses of organic substances in soot were performed using a combination of the methods for the determination of elemental and organic forms of carbon with analytical pyrolysis. Pyrolysis gas chromatography with mass spectrometric detection (Py-GC/MS) allowed the identification of organic compounds belonging to twenty different groups. The major and minor elements in peat briquettes, char and soot, were determined by X-ray fluorescence spectroscopy. The identification of grains and the chemical character of soot was performed using a scanning electron microscope with energy dispersive X-ray spectrometry. The mineral phases in ash were determined by X-ray diffraction. The behaviour of the inorganic elements in combustion products (ash and soot) was studied by means of an enrichment factor. The analytical results are used for characterizing the technological conditions of combustion. The soot deposits from the more advanced boilers with increased combustion temperature contain more organic compounds which indicate the highly carbonized cellulose (benzofurans and dibenzofurans). The increased combustion temperature is indicated by increased concentrations of heterocyclic and aliphatic nitrogen compounds, while the total concentrations of nitrogen in soot from boilers of both types are comparable.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3