An Enhanced Method to Assess MPC Performance Based on Multi-Step Slow Feature Analysis

Author:

Shang LinyuanORCID,Wang Yanjiang,Deng Xiaogang,Cao Yuping,Wang Ping,Wang Yuhong

Abstract

Due to the wide application of model predictive control (MPC) in industrial processes, the assessment of MPC performance is essential to ensure product quality and improve energy efficiency. Recently, the slow feature analysis (SFA) algorithm has been successfully applied to assess the performance of MPC. However, the disadvantage of the traditional SFA-based predictable index is that it can only extract one-step predictable information in the monitored variables. In order to better mine the predictable information contained in the monitored variables with large lag, an enhanced method to assess MPC performance based on multi-step SFA (MSSFA) is proposed. Based on the relationship between the slowness of slow features (SFs) and data predictability, an MSSFA model SFA(τ) is built through extending the temporal derivatives of the SFs from one step to multiple steps to extract multi-step predictable information in the monitored variables, which is used to construct a multi-step predictable index. Then, the predictable information in the SFs is further extracted for enhancing the multi-step predictable index to improve its sensitivity to performance changes. The effectiveness of the proposed method has been verified through two process simulation examples.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3