Robust Perturbation Observer-based Finite Control Set Model Predictive Current Control for SPMSM Considering Parameter Mismatch

Author:

Liu ,Zhao

Abstract

In order to improve the dynamics of the surface-mounted permanent magnet synchronous motors (SPMSM) used in servo systems, finite control set model predictive current control (FCS-MPCC) methods have been widely adopted. However, because the FCS-MPCC is a model-based strategy, its performance highly depends on the machine parameters, such as the winding resistance, inductance and flux linkage. Unfortunately, the parameter mismatch problem is common due to the measurement precision and environmental impacts (e.g., temperature). To enhance the robustness of the SPMSM FCS-MPCC systems, this paper proposes a Lundberg perturbation observer that is seldom used in the FCS model predictive control situations to remove the adverse effects caused by resistance and inductance mismatch. Firstly, the system model is established, and the FCS-MPCC mechanism is illustrated. Based on the machine model, the sensitivity of the control algorithm to the parameter mismatch is discussed. Then, the Luenberger perturbation observer that can estimate the general disturbance arising from the parameter uncertainties is developed, and the stability of the observer is analyzed by using the discrete pole assignment technique. Finally, the proposed disturbance observer is incorporated into the FCS-MPCC prediction plant model for real-time compensation. Both simulation and experiments are conducted on a three-phase SPMSM, verifying that the proposed strategy has marked control performance and strong robustness.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3