Comparison Study on Photo-Thermal Energy Conversion Performance of Functionalized and Non-Functionalized MWCNT Nanofluid

Author:

Boldoo ,Ham ,Cho

Abstract

Multiwalled carbon nanotubes (MWCNTs) have attracted attention from researchers because of their superior thermal properties and high optical absorption. In this investigation, the thermal and optical properties of functionalized and nonfunctionalized MWCNT nanofluid based on ethylene glycol/water were experimentally studied and compared. The results indicated that the use of the functionalized MWCNT nanofluid improved the thermal properties and optical absorption performance compared with the nonfunctionalized MWCNT nanofluid. The thermal conductivity enhancement of the functionalized MWCNT nanofluid was higher than that of the nonfunctionalized MWCNT nanofluid. The maximum thermal conductivity enhancement (10.15%) was observed in a functionalized MWCNT concentration of 0.01 wt% at 50 °C compared with the base fluid. In addition, the photo-thermal energy conversion efficiency of the functionalized MWCNT nanofluid was higher than that of the nonfunctionalized one owing to its higher light absorption and thermal conductivity.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3