Facile Synthesis and Surface Characterization of Titania-Incorporated Mesoporous Organosilica Materials

Author:

Gunathilake ChamilaORCID,Kalpage Chandrakantha,Kadanapitiye Murthi,Dassanayake Rohan S.ORCID,Manchanda Amanpreet S.,Gangoda Mahinda

Abstract

Titania-incorporated organosilica-mesostructures (Ti-MO) were synthesized using tris [3-(trimethoxysilyl)propyl]isocyanurate, tetraethylorthosilicate as silica precursors, and titanium isopropoxide as the titanium precursor via a co-condensation method in the presence of the triblock copolymer, Pluronic P123. The triblock copolymer was completely removed by extraction with a 95% ethanol solution, followed by a thermal treatment at 350 °C under flowing nitrogen without decomposing isocyanurate bridging groups. The molar ratio of titanium to silica in the mesostructures was gradually changed by increasing the amount of tetraethylorthosilicate in the initial reaction mixture. Our synthesis strategy also allowed us to tailor both adsorption and structural properties, including a well-developed specific surface area, high microporosity, and large pore volume. A portion of the samples was thermally treated at 600 °C to remove both the block copolymer and bridging groups. The thermal treatment at 600 °C was used to convert the amorphous titania into a crystalline anatase form. The Ti-MO materials were characterized using a N2 adsorption desorption analysis, thermogravimetric analysis (TGA), solid state nuclear magnetic resonance (NMR), transmission electron microscope (TEM), and X-ray powder diffraction (XRD). CO2 adsorption studies were also conducted to determine the basicity of the Ti-MO materials. The effect of the surface properties on the CO2 sorption was also identified.

Publisher

MDPI AG

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3